Lyapunov functions for fractional order h-difference systems
نویسندگان
چکیده
This paper presents some new propositions related to the fractional order h-difference operators, for case of general quadratic forms and polynomial type, which allow proving stability systems, by means discrete Lyapunov direct method, using functions, functions any positive integer order, respectively. Some examples are given illustrate these results.
منابع مشابه
Stability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملstability analysis of fractional-order nonlinear systems via lyapunov method
in this paper, we study stability of fractional-order nonlinear dynamic systems by means of lyapunov method. to examine the obtained results, we employe the developed techniques on test examples.
متن کاملOn the Lyapunov theory for fractional order systems
We provide the main features of Lyapunov theory when it is formulated for fractional order systems. We give consistent extensions of Lyapunov, LaSalle and Chetaev classical theorems to the case of fractional order systems. We give examples to illustrate the applications of the concepts and propositions introduced. © 2016 Elsevier Inc. All rights reserved.
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2021
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2104155l